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Visualizing dynamics of angiogenic 
sprouting from a three-dimensional 
microvasculature model using 
stage-top optical coherence 
tomography
Haruko Takahashi1, Keisuke Kato2, Kenji Ueyama2, Masayoshi Kobayashi2, Gunwoong Baik1, 
Yasuhiro Yukawa3, Jun-ichi Suehiro4 & Yukiko T. Matsunaga1

Three-dimensional (3D) in vitro microvasculature in a polydimethylsiloxane-based microdevice was 
developed as a physiologically relevant model of angiogenesis. The angiogenic process is monitored 
using stage-top optical coherence tomography (OCT). OCT allows non-invasive monitoring of the 3D 
structures of the prepared host microvasculature and sprouted neovasculature without fluorescence 
staining. OCT monitoring takes only a few minutes to scan through the several-millimetre scale 
range, which provides the advantage of rapid observation of living samples. The obtained OCT cross-
sectional images capture 3D features of the angiogenic sprouting process and provide information 
on the dynamics of luminal formation. The stage-top system used in this study enables the observer 
to visualize the in vitro dynamics of 3D cultured cells simply and conveniently, offering an alternative 
monitoring method for studies on angiogenesis and providing quantitative information about vascular 
morphological changes.

Angiogenesis is the physiological process for de novo vascular network formation from pre-existing blood ves-
sels1–3. It is often accompanied by lumen formation and supplies oxygenated and nutrient-rich blood to avascular 
tissues in the body, which is vital for human development. In contrast, abnormal angiogenesis, characterized 
by immature, leaky and heterogeneous vascular phenotypes, is associated with the prognosis of many types of 
diseases, such as inflammation, diabetic retinopathy and tumor growth4. It is therefore an attractive drug target 
and various anti-angiogenic agents are already on the market. Recently, a large number of studies have shown 
that anti-angiogenic therapies transiently normalize abnormal vasculatures and vascular remodeling can alter 
the efficacy of combined chemotherapy5,6. While the emerging concept has provided new insight for pharmaco-
logical strategies of anti-angiogenic therapies, the underlying mechanism remains unclear because the methods 
for microscopic observation are limited in spatial-temporal resolution. If it is capable to evaluate the structural 
change of vasculatures, especially of sprouting points, responding to anti-angiogenic drug with spatial informa-
tion in real time, pharmacological target sites and cellular/tissue responses can be investigated in more details. 
Thus, there is a growing need for non-invasive and real-time monitoring systems for capturing architectural and 
structural change of vessels accompanying anti-angiogenic treatment.

To date, angiogenesis has been evaluated using several valuation points, including the number of sprouts, 
length of the sprouts, and vascular density. Angiogenesis has been studied in vitro since the 1980 s7,8. Initial 
reports described vasculature-like lumen formation from endothelial cells on extracellular matrices. Later, the 
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generation and elongation of sprouts attracted attention. These findings prompted the development of sprouting 
models from embedded cells on micro-beads, the ‘beads assay method’, and isolated vessels from the body, the 
‘ex vivo method’8. In some cases, however, new vasculature from these models included primitive sprouts without 
lumens. On the other hand, recent advances in tissue engineering combined with microfabrication and microflu-
idics have enabled the development of microengineered in vitro models of the functional tissues. Several in vitro 
angiogenesis models in silicone-based microdevice were reported9,10. These devices enable to monitor angiogenic 
sprouting morphogenesis under the microscope.

Identifying matured functional sprouts with lumen formation and detecting the lumen-forming process are 
essential for precise observation of angiogenesis. Information on geometrical or structural properties is important 
for detecting lumen formation, but to date there is no simple, versatile method for monitoring dynamic changes 
of cells and tissues. In addition, it would be a significant advantage to be able to see dynamic changes in an entire 
vasculature as well as the developing neovasculature over time to detect physiological phenomena during the 
angiogenic process. The blood vessels in the body appear in a variety of sizes, with diameters ranging from ten to 
hundreds of microns. Thus, wide-range and longitudinal imaging of both the host (parent) vasculature and the 
neovasculature is required for these investigations.

There have been substantial efforts to visualize cells under precise, appropriate conditions11. Traditionally, 
brightfield microscopy (BFM) has been utilized for imaging live cells. The images obtained, however, are 
two-dimensional (2D) and planar and therefore are inappropriate for observing three-dimensional (3D) lumen 
formation. Confocal laser scanning microscopy (CLSM) allows 3D reconstruction of images but requires fluo-
rescence staining of target molecules, cells, and tissues, which limits long-term live imaging. Additionally, high 
intensity laser irradiation is phototoxic against fluorescent probes, which causes fluorescence photobleaching. 
CLSM microscopes also are weak in regard to high resolution when scanning along the optical (z) axis, which is 
responsible for inaccurate measurements of samples across an area of thickness. Recently, light sheet fluorescence 
microscopy (LSFM) has been developed and has better multi-angle and less phototoxic observations12. The LSFM 
has several advantages over CLSM, including high-speed scanning, reduced phototoxicity from fluorescence, 
and deep imaging through thick tissues. It is not a versatile method at this point, however, because of the unique 
specimen preparation required: A transparent sample embedded in a cylindrical gel is needed, complicating 
observation of a sample in a cell culture dish. Optical coherence tomography (OCT) has been developed for 
non-invasive, cross-sectional imaging in biological systems13. It is already known as a versatile imaging method 
in the ophthalmological field, especially for funduscopic examination of the retina14. OCT uses low-coherence 
interferometry to produce a 2D cross-sectional image of optical scattering from internal tissue microstructures. 
3D images can then be constructed from these 2D images. OCT also allows imaging samples with a wide range of 
thickness (< 2 mm). OCT techniques, however, are unorthodox in the area of research and development because 
there are few accessible systems with stage-type implementation15 suitable for microplates and cell culture dishes.

In this work, we evaluated stage-top modelled OCT as a convenient alternative method for 3D live imaging 
of vessel structure change during angiogenesis in vitro. We evaluated dynamic angiogenic sprouting from pre-
pared 3D microvasculatures in a polydimethylsiloxane (PDMS)-based microdevice, with a focus on live moni-
toring of neovasculature elongation and lumen formation. We found that OCT is an ideal method that allows 
(i) non-invasive monitoring, (ii) quick scanning in a wide range and depth, and (iii) 3D visualization of vessels’ 
luminal structures and quantitative analysis of structural parameters. This report describes the use of OCT tech-
niques for detecting the dynamics of in vitro cultured cells to provide a new avenue for studying angiogenesis.

Results and Discussion
3D In Vitro Angiogenesis Model with the PDMS Microdevice. For the in vitro angiogenesis model, 
we prepared a microvasculature with endothelial cells using the bottom-up approach via a needle method9,10. This 
method can provide a functional and perfusable 3D microvasculature model which grows and develops new ves-
sel-like structures in response to inflammatory stimuli, reflecting the in vivo angiogenic process. In addition, the 
model captures dynamic changes of the entire vasculature, including both angiogenic sprouting and alterations 
in the host/parent microvasculature. As the dynamics of the host microvasculature is also significant throughout 
the angiogenic process, microvessels of several sizes (120, 200, and 300 μ m in diameter) were monitored. To that 
end, we designed a PDMS-based, three-channel microdevice and fabricated microvasculatures, as summarized 
in Fig. 1A.

The PDMS microdevice has three dumbbell-shaped microvasculature chambers with channels [outside diam-
eter (O.D.) 300 μ m] through which to insert needles. Human umbilical vein endothelial cells (HUVECs) were 
chosen as a representative endothelial cell source, and type I collagen was chosen as the extracellular matrix for 
microvasculature fabrication. Acupuncture needles (120, 200, and 300 μ m in diameter) were inserted across the 
PDMS device, and collagen solution was added to fill the central rectangular portion of each chamber. After the 
collagen gelled via incubation for 30 min at 37 °C, the needles were removed to leave a tubular opening in the 
collagen gel. A HUVEC suspension was injected into the remaining micro-channel and cultured in the medium 
at 37 °C for 2 days to allow microvasculature formation. After the 2-day incubation, the diameter of the microvas-
culature and the cell density on the collagen walls were measured (Fig. S1 in the Supplementary Information). The 
diameters of the fabricated microvasculatures created with 120, 200, and 300 μ m micro-needles were measured 
by BFM (Fig. S1A) and found to be 80.9, 180.9, and 293.8 μ m, respectively. The sizes of microvasculature tended 
to shrink slightly (~33%) compared with the sizes of the prepared micro-channels. This shrinkage was likely due 
to the cell− substrate and cell− cell interactions performed on the relatively soft collagen walls. To determine 
the cell density of HUVECs on the walls of each micro-channel, the HUVECs’ nuclei were stained and viewed 
using CLSM. Figure S1B shows that the HUVECs adhered to collagen walls, forming a monolayer at densities of 
1.6– 1.8 ×  105 cells/cm2 over all sizes of microvasculature. This demonstrated that uniformly cell-adherent micro-
vasculatures with various pre-set diameters were successfully prepared in the PDMS microdevice.
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Angiogenesis Induced by Vascular Endothelial Growth Factor. To induce angiogenesis on prepared 
microvasculatures in the PDMS device, vascular endothelial growth factor (VEGF) (50 ng/mL) was added to 
the medium and incubated for 7 days. Changes in the microvasculature after addition of VEGF was monitored 
by BFM (shown in Fig. 2). VEGF is a growth factor that stimulates vasculogenesis and angiogenesis induced by 
macrophages, platelets, keratinocytes, and tumour cells16,17. A number of studies have induced angiogenesis by 
adding a range of VEGF concentrations18, finding that the sprouting of newer vessels from the microvascula-
tures was highly reproducible under the VEGF condition of 50 ng/mL in the same system that we used. Also, no 
sprouting of new vessels was detected in incubated microvasculatures without the VEGF addition (see Fig. S2 
in the Supplementary Information), indicating that the sprouting behaviour was induced by the VEGF supple-
ments. The diameters of the microvasculatures expanded over time, and their smooth, straight tubular structures 
changed into bumpy, bellows-like structures. Sprouting from prepared microvasculatures was observed begin-
ning 2 days after VEGF stimulation, with the sprouts continuously elongating for up to 7 days. This sprouting 
action over time well agreed with that found in previous reports7,18. Interestingly, formation behaviour of neovas-
cular vessels was characterized by the sizes of the prepared microvasculatures. Longer and larger neovascular ves-
sels formed from host microvasculature with smaller diameters (O.D. 120 and 200 μ m), while only small sprouts 
were detected from large microvasculatures (O.D. 300 μ m). The cell number and density in each PDMS-device 
(approximately 1.5 ×  106 cells/device at initial seeding) was approximately the same in the three microvascula-
ture models, suggesting the same oxygen state. But the effect of small diameter on hypoxic condition could not 
be ruled out. Another potential explanation is a geometrical cue rather than biochemical and biophysical cues 
surrounding the HUVECs. The role of diameter of host microvasculature in angiogenic sprouting process still 
remains unclear at this point and further investigation is needed in future work. Although the angiogenic sprout-
ing from pre-formed 3D microvasculatures was observed live by BFM, lumen formation of neovascular vessels 
could not be seen using this method.

Figure 1. Concept presented in this study. (A) Polydimethylsiloxane (PDMS)-based microdevice and 3D 
microvasculature for in vitro angiogenesis model. Bar =  1.0 cm. (B1) Stage-top optical coherence tomography 
(OCT) setup. The super luminescent diode (SLD) output is coupled into a single mode fibre and split at the fibre 
coupler into the microvasculature sample and reference arms. Reflections from the two arms are combined at 
the coupler and detected by the spectrometer. (B2) Scanning condition for the microvasculatures. Longitudinal 
imaging was performed in the area of microvasculature: where x =  1 mm, y =  2 mm, z =  1 mm. VEGF, vascular 
endothelial growth factor.
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Visualization of Angiogenesis. The change of microvasculatures after stimulation by VEGF was also mon-
itored by OCT. Figure 1B describes the OCT setup used in this experiment. OCT provided cross-sectional images 
with a slice thickness of 2.56 μ m, as shown in Fig. 3A. OCT permits obtaining live images non-invasively with 
no staining needed and high scan speed. For example, the observational time for one microvasculature in this 
study (scan area: x ×  y ×  z: 1 ×  2 ×  1 mm) was ~5 min. The obtained x− z plane cross-sectional images were recon-
structed to 3D images using ImageJ software, as shown in Fig. 3A. OCT determined the increasing diameters 
of the microvasculature over time as well as BFM. Additionally, the luminal areas of the microvasculature were 
detected. It should be noted that the formation of the new vessel’s lumen was also visualized over time. Changes in 
the microvasculature were clearly indicated on reconstructed 3D images of the entire microvasculature as shown 
in Fig. 3B, which shows the shape changing to a bumpy, bellows-like tubular structure and outward sprouting of 
the neovasculature (also see movies in the Supplementary Information).

Characterization of Neovasculature. In order to characterize the neovasculature from host microvascu-
lature, we first compared images of neovasculature from BFM, CLSM, and OCT for observation of angiogenesis 
in our 3D in vitro models (Fig. 4A–C). As discussed above, BFM allows live imaging of cells but provides only 
2D and planar images that do not allow evaluation of 3D vasculatures (Fig. 4A). OCT can provide both types of 
information: 3D structure and live imaging (Fig. 4C). However, resolution of OCT is 1–10 μ m in x-, y- and z- axis 
directions, which are lower than that of optical microscope systems (200–1000 nm), limiting it to imaging details 
of cell structure. In contrast, CLSM allows observation of 3D structures with higher resolution (200–1000 nm 
in x- and y- axis and 500−1000 nm in z-axis directions), but requires fluorescence staining. To see the micro-
vasculature under CLSM, the microvasculatures must undergo a 7-day incubation period, after which they are 
fixed. The actin fibers and nuclei are then stained using fluorescence-labelled phalloidin and Hoechst 33342, 
respectively (Fig. 4B and D). On CLSM images, actin fibers in the HUVECs were clearly shown. Also, the luminal 
structures of the neovasculature that continued from existing microvasculature were confirmed (Fig. 4D-a), but 
these images could only be obtained at the end-point of the experiment, thereby lacking ongoing assessment over 
time. To evaluate if organized neovasculature formation occurred in our 3D in vitro model, apical-basal polarity 
was investigated using immunofluorescence staining on 7-day cultured microvasculatures (Fig. 4E and F). For 
basolateral side, laminin deposition was observed. As shown in Fig. 4E and cross-sectional image (Fig. 4E-a), 
laminin was deposited outside of the luminal structure where cells contact the collagen gel channel. On the other 
hand, sialoglycoprotein podocalyxin as an apical marker localized around the luminal space in the neovasculature 
(Fig. 4F and F-a). These results were in good agreement with previous study9 and suggested that the sprouted neo-
vasculatures from host microvascularture had matured luminal structures with physiologically relevant structural 
features, apical-basal polarity.

Neovascular Formation from Prepared Microvasculature. The dynamic changes of angiogene-
sis over time were analysed using cross-sectional images obtained from OCT, which are summarized in Fig. 5. 

Figure 2. Bright field microscopy (BFM) images of angiogenesis process induced by VEGF (50 ng/mL). 
Bars =  200 μ m.
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Several parameters (e.g., number and length of sprouts) have been used to evaluate angiogenesis using BFM and 
CLSM7,8,18, but these images lack information on the luminal structure. We focused on viewing the entire growth 
period, until the sprouts had gained their total length and we could visualize the lumens of the neovasculature. 
The vascular sprouting mechanism in the angiogenic process has been studied by a number of laboratories, and a 
model (called ‘cord hollowing model’) is offered (Fig. 5A)19–21. The process of luminal formation, however, is still 
under debate because direct, live observation is challenging.

Figure 3. Optical coherence tomography (OCT) images of the angiogenic process induced by VEGF (50 ng/mL).  
(A) Partial time points of the microvasculatures’ sprouting. Top row: cross-sectional images surrounded 
by collagen gel. Bars =  100 μ m. Bottom row: reconstructed 3D images performed using ImageJ software. 
Bars =  100 μ m. (B) 3D images of the entire microvasculature (2 mm in length) with 200-μ m diameter at days 0 
and 7.
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Figure 5B shows the typical angiogenic process for prepared microvasculature. In OCT cross-sectional images 
detecting the sprouting area, a precise circular vasculature was observed initially (day 0). OCT detected a dif-
ference in light interference. The region of cells were shown as a strong white signal surrounded by a grey back-
ground, which came from collagen scattering. The lumen was shown as black. Two days after incubation with 
VEGF (50 ng/mL), the shape of the vasculature was dynamically changed, with a neovasculature sprout arising 
from the host microvasculature. The sprout continued to grow for the next 7 days (details shown in Fig. 5C). We 
then manually established the starting points to the sprout and luminal end points in each cross-sectional image. 
The total sprout length between the starting point and end point, and the luminal length between the starting 
point and end point were measured. Figure 5D shows the sprouting kinetics of the neovasculature. A void area 
(lumen) of the sprouted neovasculature was smaller than the total sprout, indicating that the endothelial cells that 
constructed the neovasculature were initially attached at their tips and then parted to form the mature lumen. 
These results could not provide a conclusive molecular mechanism in the vascular sprouting process directly, 
however it is demonstrated that the OCT images captured a structural relevance to the debated the cord hollow-
ing model19–21.

Dynamics of the Entire Microvasculature. Dynamic changes in the entire microvasculature over time 
were also analysed using OCT images (summarized in Fig. 6). The x− z cross-sectional images were processed 
with several filters and then converted into binary images to reduce noise from the collagen gel surrounding the 
microvasculature and give simple black-and-white images of microvasculature lumens. The luminal diameter 
and intravascular volume were calculated using these processed images (see details in Method section). Under 
the static culture conditions used in this study, both the luminal diameter (Fig. 6A1) and intravascular volume 
(Fig. 6B1) were increased with time. After 7 days of incubation, for example, the lumen diameters of each of three 
microvasculatures were 95.6, 229.2, and 368.4 μ m, respectively, increased from 55.9, 153.6, and 261.7 μ m on day 0.  
Interestingly, as shown by the rate of change in Fig. 6A2 and B2, the smaller diameter enlarged. The microvas-
culature with the smallest diameter (prepared with O.D. 120 μ m micro-needles) increased their volume 3.7-fold, 
whereas those with larger diameters (prepared with O.D. 200 and 300 μ m micro-needles) increased only 2.5- and 
2.1-fold, respectively. There were no significant changes in the controls incubated without VEGF (see Fig. S2 in 
the Supplementary Information). These results indicated that VEGF induced proliferation of HUVECs, leading 
to expansion of the entire microvasculature as well as increased sprouts in the neovasculature. By using a 3D  
in vitro microvasculature model, dynamic changes in an entire system such as response of host vasculature to 
VEGF stimulation as well as the developing neovasculature over time was successfully detected, capturing physio-
logical phenomena during the angiogenic process which is not demonstrated by the traditional bead assay method.

Figure 4. Characterization of neovasculature in the 3D in vitro angiogenesis model. (A) Brightfield 
microscopy (BFM) images. Bar =  200 μ m. (B) Confocal laser scanning microscopy (CLSM) images. Bar =  200 μ m.  
(C) Optical coherence tomography (OCT) images. The shown images corresponded to areas bounded by the 
yellow box in the BFM image. Bar =  100 μ m. (D) Neovascurature stained for F-actin and nuclei. The shown 
images corresponded to areas bounded by the yellow box in the CLSM image. (D-a) In-plane section of 
neovascurature shown in (D). Bar =  50 μ m. (E) Neovascurature stained for laminin. (E-a) In-plane section 
of neovascurature shown in (E). Bar =  50 μ m. (F) Neovascurature stained for podocalyxin. (F-a) In-plane 
section of neovascurature shown in (F). Bar =  50 μ m. All images are obtained 7 days after VEGF (50 ng/mL) 
stimulation. Host microvasculature O.D. =  120 μ m.
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Conclusions
In summary, we prepared 3D in vitro microvasculatures as a model to view physiologically relevant angiogenesis 
and were able to carry out live imaging successfully using stage-top OCT. The in vitro angiogenic process was 
clearly and non-invasively monitored with no need for fluorescence staining. The obtained OCT images captured 
3D features both of prepared microvasculatures and neovessel sprouts, showing their advantage over BFM. The 
stage-top system enabled simple, convenient scanning, providing images through the several-millimetre scale 
area within a short time. Additionally, cross-sectional images obtained at the point of sprouting clearly visu-
alized the luminal formation process, allowing us to measure the dynamic changes in the sprout, including its 
luminal structures as well as traditional parameters, such as sprout number and length. There are a number of 
conventional observation techniques to monitor cell growth in live samples without staining. However, quick live 
scanning of three-dimensional tissues with relatively large volume (i.e., millimeter scale) for a long surveillance 
period is still challenging. The resolution of OCT is still lower than that of optical microscope systems, limiting it 
to imaging details of cell structure. However, OCT provides simple, rapid, noninvasive imaging of 3D tissues and 
promises great utility not only for angiogenesis of blood vessels but other physiological events such as growth of 
spheroids or luminal formation. Due to rapid growth of the field of 3D in vitro models or organs on a chip, simple 
and versatile detection methods for long culture period such as OCT technique will become increasingly essential 
for quantitative image analyses.

Materials and Methods
Materials. Type I-A Cellmatrix®  collagen derived from porcine tendons by acid extraction (3 mg/mL, pH 3)  
was obtained from Nitta Gelatin Inc. (Osaka, Japan). Acupuncture needles (120-μ m diameter: J type, No. 02, 

Figure 5. Analysis of sprouts from the prepared host microvasculature. (A) Vascular sprouting model19–21.  
(B) Neovascular formation detected by OCT. Host microvasculature O.D. =  120 μ m, VEGF (50 ng/mL).  
Bar =  100 μ m. (C) Measuring analysis of the sprouted neovasculature. (D) Sprouting kinetics of the 
neovasculature. Filled circles represent the total sprout length. Open circles represent the lumen length. Host 
microvasculature O.D. =  120 μ m, VEGF (50 ng/mL). Bar =  100 μ m.
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30-mm length; 200-μ m diameter: J type, No. 3, 30-mm length; 300-μ m diameter: J type, No. 8, 60-mm length) 
were purchased from Seirin Co. Ltd. (Shizuoka, Japan). Fibronectin solution (1 mg/mL) was purchased from 
Biomedical Technologies Inc. (Stoughton, MA, USA). Hoechst 33342 and Alexa Fluor® phalloidin 488 were 
purchased from Thermo Fisher Scientific, Inc. (Waltham, MA, USA). Human vascular endothelial growth factor 
(VEGF165) recombinant, 0.5 w/v% trypsin-5.3 mmol/l EDTA-4Na solution, and 10 ×  phosphate buffer saline (-) 
(PBS) were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Dextran from Leuconostoc spp. 
(Mr 450,000–650,000) and Hanks’ Balanced Salt Solution (HBSS) were purchased from Sigma-Aldrich Co. LLC. 
(St. Louis, MO, USA).

Cell Culture. Human umbilical vein endothelial cells (HUVECs) and cell culture medium EGM™ -2 
Endothelial Cell Growth Medium-2 BulletKit™  were purchased from Lonza Japan Ltd. (Tokyo, Japan). HUVECs 
were seeded on cell culture polystyrene dishes and incubated at 37 °C with 5% CO2. Once confluent, cells were 
harvested after 3 min incubation with trypsin-EDTA 0.25% and collected by centrifugation (400 ×  g, 3 min) prior 
to resuspension in the medium. HUVECs passage 4 was used to prepare the microvasculature model.

Device Preparation. Polydimethylsiloxane (PDMS)-based microdevices with dumbbell-shape chambers 
having a needle inserting channel (diameter 300 μ m) were prepared with slight modification of the method pre-
viously reported by Tien et al.10 and kindly gifted by Dai Nippon Printing Ltd. (Tokyo, Japan). Each channel con-
tained a central rectangular area (4 ×  6 ×  4 mm: width ×  length ×  height) for collagen gel and reservoirs (cylinder 
dimension; 3 ×  2 mm: diameter ×  height) at both ends.

Briefly, a convex mould was fabricated by a 3D printer to produce the PDMS device. The surface of the con-
vex mould was treated with a release agent. A mixture of PDMS and a curing agent (SILPOT 184; Dow Corning 
Toray Co., Ltd., Tokyo, Japan) at a ratio of 10:1 (w/w) was cast on the convex mould equipped with micro-needles 
(diameter 300 μ m) and subsequently cured at 37 °C overnight. A concave PDMS device was obtained by peeling 
it off the convex mould. The PDMS device and glass coverslips were treated with O2 plasma (PDC-32G; Harrick 
Plasma, Ithaca, NY) for 60 s, and immediately bonded at 75 °C for 2 h. The PDMS device was cleaned with O2 
plasma for 60 s and sterilized by exposure to an ultraviolet lamp under the cell culture hood for 5 min prior to cell 
culture.

Figure 6. Dynamic changes in the entire microvasculature as analysed on OCT images. (A) Analysis results 
of the lumen diameter of the prepared host microvasculature: the measured value (A1) and the change rate 
(A2). (B) Analysis results of the intravascular volume of the entire microvasculature: the measured value (B1) 
and the change rate (B2). Microvasculatures incubated in VEGF (50 ng/mL)-added medium for 7 days.
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Microvasculature Preparation. A top glass (6.0 ×  20.5 mm: width ×  length) was placed on the cham-
ber to cover the central rectangular channel. The surface of the chamber in the PDMS device was coated with 
fibronectin (10 μ g/mL) in phosphate-buffered saline (PBS) for 30 min. Acupuncture needles at diameters of 120, 
200, and 300 μ m were coated with 1% (w/w) bovine serum albumin (BSA) in PBS and then inserted through 
the channel. The neutralized collagen solution (final concentration 2.4 mg/mL) was added in the chamber and 
incubated at 37 °C for 30 min. The micro-needles were removed from the device to obtain one-side-open colla-
gen micro-channels. A 5-μ L aliquot of the HUVECs’ suspension [0.5 ×  107 cells/mL for the 120-μ m channel or 
1.0 ×  107 cells/mL for 200- and 300-μ m channels in EGM-2 containing 3% (w/w) dextran] were loaded into the 
collagen gel channels, and incubated at 37 °C for 15 min to allow their attachment to the inner wall of the collagen 
gel channel. Subsequently, the device was placed in 35 mm Petri dish to avoid vaporization, 1.5 mL of endothelial 
cell growth medium (EGM-2) was added to cover the collagen gel channels, and HUVECs were incubated at 
37 °C, 5% CO2 for 2 days. The added medium to the device (1.5 mL) was changed at 3 and 24 h after preparation.

Angiogenesis induced by VEGF. After 2 days of pre-culture of the microvasculature, the EGM-2 medium 
was exchanged, and VEGF165 solution in PBS was directly added to medium at a final concentration of 50 ng/mL. 
The devices were then incubated at 37 °C and 5% CO2 for 7 days. The medium containing VEGF165 was changed 
every 48 h. Cell morphology and angiogenesis from the microvasculature were monitored under a phase contrast 
microscope with lenses of 10 ×  magnification (Axio Observer D1; Zeiss, Oberkochen, Germany).

OCT Observation. The spectrum-domain OCT (SD-OCT) system is outlined in Fig. 1B1. The system is 
equipped with an 850-nm light from a super luminescent diode (SLD) and an objective (N.A. =  0.07). The SLD 
output is coupled into a single-mode fibre and split at the fibre coupler into the microvasculature sample and 
reference arms. Reflections from the two arms are combined at the coupler and detected by the spectrometer. The 
microvasculature was imaged from the bottom surface. To acquire data for each 2D x− z cross-sectional image, 
a series of longitudinal scans were performed with the optical beam position translated laterally between scans 
(Fig. 1B2). The data acquisition window was 1 ×  2 ×  1 mm, and the voxel size was 2.56 ×  2.56 ×  2.56 μ m. The 
lateral resolution of the image is limited by the beam diameter inside the sample. In our measurements, the beam 
diameter was 10 μ m. The minimum image acquisition time for the images consisting of 780 longitudinal scans 
shown here was ~5 min.

Image Analysis. Original images obtained by the OCT system contained noise from the collagen gel sur-
rounding the microvasculature. To reduce this noise, image processing was applied for the collected original 
OCT stack images using ImageJ image processing software (Version 1.50i; NIH) as follows. The images were 
subsequently processed with filters (3D maximum filter, 3D Gaussian low-pass filter, 2D FFT band-pass filter, and 
3D Gaussian low-pass filter). The images were then converted into binary images so that the cell area is white and 
all other areas are black. 3D images were constructed using the ImageJ Plugin 3D viewer. Sprout length, lumen 
length, lumen diameter and intravascular volume of the microvasculature were analysed as described below.

Sprout Length and Lumen Length. Total sprout length was defined as the distance between starting point and 
sprout end point. Lumen length was defined as the distance between starting point and lumen end point. These 
points were manually selected from the 2D images then each distance was measured. Detail of the measurement 
image are shown in Fig. 5C. Target neovasculatures were selected as the three most elongated sprouts (total 
length =  153–242 μ m) from microvasculature (O.D. =  120 μ m).

Lumen Diameter and Intravascular Volume of the Microvasculature. To analyse the luminal diameter of prepared 
host microvasculature, ‘particle analysis’ (size >  500 pixels2) was performed after binary image conversion. The 
width (x axis direction) of the luminal diameter was measured from each image, and mean luminal diameter of 
780 slices was calculated. To analyse the intravascular volume, the area of the lumen was measured from each 
image, and the volume was calculated by multiplying the measured area ×  the distance between slices (2.56 μ m) 
for 780 slices (total microvasculature length 2 mm).

Immunohistochemistry and CLSM Observation. Cells and extracellular matrix were visualized using 
immunofluorescence staining. Briefly, after washing with PBS, the microvasculature in the PDMS device was 
fixed with 4% (w/w) paraformaldehyde in PBS for 30 min and then permeabilized with 0.5% Triton-X in PBS 
for 10 min. Blocking was performed using 1% BSA in PBS overnight at 4 °C. For staining F-actin, the cells were 
exposed to Alexa Fluor 488-phalloidin at 25 °C for 2 h, and for nucleus, Hoechst 33342 at 25 °C for 15 min. For 
staining laminin and podocalyxin, after blocking, the microvasculature was incubated with rabbit polyclonal 
antibody against laminin (1:100; ABcam) and goat polyclonal anti-human podocalyxin (1:100; R&D) overnight at 
4 °C. The microvasculature was then washed well with PBS and exposed to Alexa Fluor 568-secondary antibodies 
and Alexa Fluor 488-phalloidin together. Both anti-rabbit and anti-goat secondary antibodies (Invitrogen) were 
used at 1:100 dilutions. Images of the stained 3D microvasculature were obtained using a confocal microscope 
(LSM700; Zeiss, Oberkochen, Germany) with lenses of 10 ×  magnification. Confocal images were processed 
using the software ZEN version 8.1 (Zeiss) to construct 3D projection images from Z-stack images.
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